C-GLYCOSYL DERIVATIVES IN NITRO SUGAR CHEMISTRY: SYNTHESIS OF D-RIBOFURANOSYLNITROMETHANE DERIVATIVES AND THEIR EPIMERIZATION UNDER NEUTRAL CONDITIONS\*

Tetsuyoshi Takamoto, Hiroshi Omi, Toshihiko Matsuzaki, and Rokuro Sudoh Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Japan)

(Received March 15th, 1977; accepted for publication in revised form, May 24th, 1977)

### ABSTRACT

The nitromethane condensation-product (3) from 2,3-O-isopropylidene-Dribose (2) underwent dehydration and subsequent thermal cyclization in dimethyl sulfoxide to give a mixture of  $\alpha$ - and  $\beta$ -D-ribofuranosylnitromethane derivatives (5 and 6) in a ratio of 7:2. Heating of 6-O-benzoyl-1-deoxy-1-nitro-D-altritol (10) in water afforded  $\alpha$ - and  $\beta$ -C-glycosyl derivatives (11 and 12) in a ratio of 2:3. Pure 11 and 12 gave the same mixture of 11 and 12 when heated in water, and similar epimerization of the isopropylidene acetals 5, 6, 13, and 14 proceeded readily upon heating, leading mainly to the thermodynamically more-stable  $\alpha$  anomers.

## INTRODUCTION

The natural occurrence of a number of C-nucleosides<sup>1</sup> has led to considerable work on the synthesis of anomeric C-C bonds<sup>2</sup>. Recently, Ohrui  $et al.^3$  have demonstrated that 2,3-O-isopropylidene-D-ribofuranosylalkanes having electron-withdrawing substituents, such as cyano, carboxyl, and the like, at the  $\alpha$  position are readily prepared by Wittig reactions on 2,3-O-isopropylidene-D-ribose. The  $\alpha$  anomers of these compounds are thermodynamically more-stable than their  $\beta$  counterparts under conditions of alkaline equilibration. On the other hand, recent interest in nitro sugar chemistry in our laboratory<sup>4</sup> has extended to synthetic studies on C-glycosyl derivatives involving nitromethyl groups at C-1, as the highly reactive nitro group may have wide applications for C-C bond-formation<sup>5,6</sup>. Such C-glycosyl derivatives are also very interesting with respect to the stereochemical considerations already mentioned. It was previously reported that 1-deoxy-1-nitro-D-alditols undergo dehydration and subsequent Michael-type addition and cyclization to afford mainly glycopyranosylnitromethanes under gentle reflux in water<sup>7,8</sup> or in 1% aqueous

<sup>\*</sup>Reported at the VIIIth International Symposium on Carbohydrate Chemistry, Kyoto, Japan, August 19, 1976.

sulfuric acid<sup>9</sup>. We now describe the synthesis of D-ribofuranosylnitromethane derivatives via introduction of a 3,4-acetal function or a 6-O-benzoyl group into the 1-deoxy-1-nitro-D-hexitols derived from D-ribose. The strong electron-withdrawing power of the nitro group leads to facile epimerization under neutral conditions.

### RESULTS AND DISCUSSION

Condensation of nitromethane with 2,3-O-isopropylidene-D-ribose<sup>10</sup> (2) in the conventional manner<sup>11</sup> gave 3,4-O-isopropylidene-1-deoxy-1-nitro-D-allitol and -D-altritol\* (3 and 4) in 15 and 9% yields, respectively, with recovery of 2 in 62% yield. Higher yields could not be obtained from this reaction by variation of the conditions. These facts indicate that the reversible nature of the nitromethane condensation plays a crucial role. Although, at this stage, application of an irreversible Wittig reaction might be considered, ylides of nitromethane have not been prepared<sup>12</sup>.

Determination of the configuration at C-2 of 3 and 4 is based on the circular dichroism $^{\dagger}$  spectra of the corresponding deprotected nitroalditols 9 and 8, and indicates the (S) and (R) chiralities, respectively.

Heating 3 in dimethyl sulfoxide for 12 h at 100° caused the anticipated ringclosure via the nitroalkene intermediate (7), providing in 88% yield a mixture of

<sup>\*</sup>Compound 4 was very unstable; a degradation product showing no nitro bands in its i.r. spectrum and giving a strongly positive spot with sulfuric acid on t.l.c. was obtained when column purification was attempted.

<sup>†1-</sup>Deoxy-1-nitro-alditols having the (S) configuration at C-2 show positive c.d. curves, whereas the (R) isomers give negative curves<sup>13-15</sup>.

2,5-anhydro-1-deoxy-3,4-O-isopropylidene-1-nitro-D-altritol and D-allitol (5 and 6) in a ratio of 7:2, as determined by integration of the acetal carbon atoms in the <sup>13</sup>C n.m.r. spectrum and the isopropylidene methyl protons ( $\delta$  1.51 and 1.58) in the <sup>1</sup>H n.m.r. spectrum. These products showed the same  $R_F$  values in several solvent systems and could not be separated. The cyclization also proceeded in acetonitrile after boiling for 78 h under reflux to give the same ratio of products, but the reaction did not occur in 1,4-dioxane or toluene, and gave a complicated mixture when water or N,N-dimethylformamide were used.

When a 4:1 epimeric mixture of 8 and 9 [obtained by direct condensation of D-ribose (1) with nitromethane] was treated with an equimolar amount of benzoyl chloride-pyridine in 1,4-dioxane, crystalline 6-O-benzoyl-1-deoxy-1-nitro-D-altritol (10) was isolated in 8% overall yield. The structure of 10 was elucidated by catalytic hydrogenation followed by saponification with sodium methoxide to give a ninhydrin-positive spot that had the same chromatographic  $R_F$  value as that of the hydrogenation product of 8, but was different from that derived from 9.

Compound 10 also cyclized in the same manner in water or dimethyl sulfoxide to afford crystalline 2,5-anhydro-6-O-benzoyl-1-deoxy-1-nitro-D-altritol and -D-allitol (11 and 12), in 68% total yield. In contrast to the behavior of 5 and 6, the  $\beta$  isomer 12 preponderated over the  $\alpha$  isomer 11 (ratio of 3:2). Although the cyclization of 3 and 10 thus proceeded smoothly in polar solvents, it was extremely slow (taking > 80 h) in acetonitrile, and did not take place at all in such less-polar solvents as 1,4-dioxane and toluene. Thus, polar solvents are required for the dehydration and cyclization steps.

The considerable influence of the isopropylidene group (which makes the conformation rigid), on the formation of thermodynamically favored  $\alpha$  isomers, has been shown in other examples<sup>3,16</sup>. On the other hand, in the absence of the acetal function, epimerizable  $\beta$ -C-glycosyl derivatives are known<sup>3,17,18</sup> to be thermodynamically more-stable than their  $\alpha$  counterparts. As a rationalization for such configurational questions, Ohrui et al.<sup>19,20</sup> have recently proposed an anomeric effect in furanoses, based upon cis 1,2- and 1,3-interactions between O and H substituents.

When the mixture of 11 and 12 was treated with acetone in the presence of p-toluenesulfonic acid, followed by chromatography, 2,5-anhydro-6-O-benzoyl-1-deoxy-3,4-O-isopropylidene-1-nitro-D-altritol and -D-allitol (13 and 14) were obtained in 90% total yield. Treatment of a 2:3 mixture of 13 and 14 with sodium methoxide for 3 h afforded 5 and 6 (3:1) through debenzoylation and epimerization, with opening and reclosure of the furanose ring. The <sup>13</sup>C n.m.r. spectrum of the C-glycosyl derivatives 5, 6, 13, and 14 showed clearly distinguishable signals for the isopropylidene group\* (Table I).

Although, of course, the equilibrium between " $\alpha$ " and " $\beta$ " isomers was readily

<sup>\*13</sup>C-Chemical shift values of isopropylidene methyl and acetal carbon atoms may be conveniently employed for determination of glycosylic configuration in appropriate C-glycosyl derivatives<sup>3</sup>.

TABLE I

13C-N.M.R. DATA IN CHI.OROFORM-d: CHEMICAL SHIFTS (D.D.III.) OF ISOPROPYLIDENE CARBON ATOMS

| Compound | Isopropylidene methyl |       | Acetal carbon aton |  |
|----------|-----------------------|-------|--------------------|--|
| 5        | 24.61                 | 26.04 | 113.30             |  |
| 6        | 25.32                 | 27.27 | 114.73             |  |
| 13       | 24.68                 | 26.11 | 113.62             |  |
| 14       | 25.50                 | 27.74 | 115.28             |  |

TABLE II noteworthy solvent-effects on the epimerization of  $\beta$ -14 into the  $\alpha$  anomer 13 at 85–90° without base

| Solvent                       | Time (h) | Ratio (α:β) |  |
|-------------------------------|----------|-------------|--|
| Dry Me <sub>2</sub> SO        | 23       | 3:2         |  |
| Commercial Me <sub>2</sub> SO | 8        | 4:1         |  |
| $Me_2SO + H_2O (3:1)$         | 3        | 4:1         |  |
| Dry MeCN                      | 23       | recovered   |  |
| $MeCN + H_2O$ (3:1)           | 8        | 4:1         |  |

achieved under basic conditions, it is noteworthy that it could also be realized by thermal equilibration under neutral conditions. Under anhydrous conditions, as shown in Table II, epimerization of the  $\beta$  isomer 14 took place relatively slowly in dimethyl sulfoxide and not at all in acetonitrile. Compounds 11 and 12 also gave mixtures of the epimers in water (3 h) or dry dimethyl sulfoxide (20 h), but not in toluene. From the foregoing effects, it is clear that water, even in traces is highly effective in promoting rapid epimerization in dimethyl sulfoxide. As no such epimerization was observed at room temperature, thermal factors must be quite important and a possible push-pull mechanism aided by water is shown in the accompanying scheme. Starting from 1-deoxy-1-nitro-D-alditols, water formed first during the dehydration step probably plays a significant role in such epimerization, after initial formation of the kinetic products.

# **EXPERIMENTAL**

General methods. — Melting points are uncorrected. Solutions were evaporated in vacuo. Optical rotations were measured with a Carl Zeiss photoelectric polarimeter. Circular dichroism spectra of the nitroalditols were recorded with a JASCO Model ORD/UV-5 automatic recording spectropolarimeter, Japan Spectroscopic Manufacturing Co. (Nippon Bunko).  $^1$ H-N.m.r. spectra were recorded with a Varian T-60 or a JNM-4H-100 (JEOL) spectrometer with tetramethylsilane as the internal standard.  $^{13}$ C-N.m.r. spectra were recorded with a JEOL FX-60 spectrometer. Column chromatography and t.l.c. were performed with 100-mesh silica gel (Mallinckrodt, St. Louis) and DC-Fertig Platten Kieselgel 60  $F_{254}$ , Merck Co. Darmstadt, respectively, with the solvent systems (A) 2:1 carbon tetrachloride-acetone, (B) 10:1 carbon tetrachloride-acetone, (C) 20:1 ethyl acetate-methanol, (D) 30:1 ethyl acetate-methanol, (E) 20:1 chloroform-methanol, (F) 10:1 ethyl acetate-methanol, and (G) 4:3:4 methanol-conc. ammonium hydroxide-chloroform.

1-Deoxy-3,4-O-isopropylidene-1-nitro-D-allitol (3) and -D-altritol (4) and their hydrolysis for circular-dichroism measurements. — 2,3-O-Isopropylidene-D-ribose<sup>10</sup> (2, 2.25 g, 13.5 mmol) was treated with nitromethane (1.7 g, 27 mmol) in the presence of M sodium methoxide (15 ml) in methanol (30 ml) for 1.5 h at room temperature. After deionization with Amberlite IR-120 (H<sup>+</sup>) resin, the mixture was evaporated and the residue put on a column (18  $\times$  2.8 cm) with solvent B as the eluant. Evaporation of fractions having  $R_F$  0.37 (solvent A) gave 2 (1.6 g, 62% recovered), followed by chromatographically homogeneous, semicrystalline 3 (0.51 g, 15%);  $R_F$  0.26 (A);  $[\alpha]_D^{20}$  +10.4° (c 1.8, methanol);  $v_{max}^{KBr}$  1560 cm<sup>-1</sup> (NO<sub>2</sub>); <sup>13</sup>C n.m.r. (CDCl<sub>3</sub>) 25.32 and 27.76 p.p.m. (CMe2-methyls), 109.65 (acetal carbon), 78.97 (C-1), and 64.12 (C-6); and almost pure 4 (0.3 g, 9%) as a syrup having  $R_F$  0.19 (solvent A). Compound 3 (100 mg) was treated with 5M sulfuric acid (1.3 ml) in methanol (3 ml) for 10 h at room temperature. After deionization with Amberlite IRA-410 (OH<sup>-</sup>) resin, the residue obtained by evaporation was put on a column  $(9.5 \times 1.7 \text{ cm})$  and eluted with solvent C to give pure 9 as a syrup;  $R_F 0.19 (D)$ ;  $[\alpha]_D^{20} - 45^\circ (c 0.3, water)$ . Similar treatment of 4 (100 mg) gave 8 having  $R_F$  0.19 (D) containing a very small proportion of an impurity (t.l.c.). Aqueous solutions (10 mm) of 9 and 8 were prepared for c.d. spectra; for 9  $(c \ 0.01)^{15} [\theta]_{290-298} 1250, [\theta]_{284} 1263$ ; for 8  $(c \ 0.01)^{15} [\theta]_{290-298} 1250$ 0.00854):  $[\theta]_{286-291} - 1785$ ,  $[\theta]_{280} - 1841$ .

2,5-Anhydro-1-deoxy-3,4-O-isopropylidene-1-nitro-D-altritol (5) and -D-allitol (6). — A solution of 3 (0.5 g) in dimethyl sulfoxide (2 ml) was heated for 12 h at 100° and evaporated below 40°. The residue was purified by column chromatography (18  $\times$  2.8 cm) with solvent B as eluant. Fractions having  $R_F$  0.30 (solvent E) were combined and evaporated to give a syrupy mixture of 5 and 6 (0.41 g, 88%) in a ratio of 7:2 (by <sup>13</sup>C n.m.r. and <sup>1</sup>H n.m.r. spectroscopy). Further purification under the same chromatographic conditions gave fractions enriched in 5 (ratio of 10:1) (220 mg) and in 6 (1:2) (150 mg).

6-O-Benzoyl-1-deoxy-1-nitro-D-altritol (10). — A mixture of D-ribose (10 g),

nitromethane (50 ml), M sodium methoxide (75 ml), and methanol (75 ml) was stirred vigorously for 3 h at room temperature and then deionized with Amberlite IR-120 (H<sup>+</sup>) resin. The residue obtained by evaporation was put onto a column (12 × 3.5 cm) and eluted with solvent F. Fractions containing mainly a mixture of 8 and 9 (in the ratio of 4:1 as determined by  $^{13}$ C n.m.r. spectroscopy) were combined and evaporated. To a solution of the products in pyridine (80 ml) and 1,4-dioxane (50 ml) was added benzoyl chloride (9 ml) below 5°. The solvents were removed and the residue was washed with water and petroleum ether several times to give a syrup that was crystallized from methanol; yield of 10; 1.68 g (8%), m.p. 150° (dec.),  $[\alpha]_{20}^{20} +1.3^{\circ}$  (c 1.1, methanol);  $v_{max}^{KBr}$  1710 (C=O) and 1550 cm<sup>-1</sup> (NO<sub>2</sub>).

Anal. Calc. for C<sub>13</sub>H<sub>17</sub>NO<sub>8</sub>: C, 49.52; H, 5.44; N, 4.44. Found: C, 49.47; H, 5.48; N, 4.39.

Compound 10 was hydrogenated over 5% palladium-on-carbon in methanol for 1 h in the presence of an equimolar amount of hydrochloric acid to give a syrup that was treated with sodium methoxide. The mixture showed a ninhydrin-positive spot  $(R_F \ 0.18$ , solvent G) that was identical to that obtained by hydrogenation of 8 but different from that  $(R_F \ 0.23)$  from 9.

2,5-Anhydro-6-O-benzoyl-1-deoxy-1-nitro-D-allitol (12) and -D-altritol (11). — Compound 10 (1.25 g) was heated in water (240 ml) for 8 h at 85–90°. The mixture was filtered and the water was evaporated to give a white solid that was recrystallized from water, affording a 3:2 mixture of 12 and 11;  $R_F$  0.35 and 0.38 (solvent A), respectively; yield 0.796 g (68%). Pure 12 and 11 were obtained by preparative t.l.c. followed by recrystallization water. Compound 12 had m.p. 115–115.5°,  $[\alpha]_D^{20}$  -2.5° (c 1.1 methanol);  $v_{max}^{KBr}$  1715 (C=O) and 1560 cm<sup>-1</sup> (NO<sub>2</sub>).

Anal. Calc. for  $C_{13}H_{15}NO_7$ : C, 52.52; H, 5.09; N, 4.71. Found: C, 52.40; H, 5.11; N, 4.65.

Compound 11 had m.p. 117-118°,  $[\alpha]_D^{20}$  +43.8° (c 1.1, methanol);  $v_{\text{max}}^{\text{KBr}}$  1710 (C=O) and 1550 cm<sup>-1</sup> (NO<sub>2</sub>).

Anal. Found: C, 52.49; H, 5.10; N, 4.68.

2,5-Anhydro-6-O-benzoyl-1-deoxy-3,4-O-isopropylidene-1-nitro-D-allitol (14) and -D-altritol (13). — The mixture of 12 and 11 (0.3 g) was stirred in acetone (30 ml) in the presence of anhydrous p-toluenesulfonic acid (60 mg) for 20 h and then treated with Amberlite IRA-410 (OH<sup>-</sup>) resin. Removal of acetone gave a solid that was recrystallized from ethanol to afford a mixture of 14 and 13 [ $R_F$  0.22 and 0.28 (solvent B), respectively]; yield 0.33 g (90%). Pure 14 and 13 were obtained by preparative t.l.c. or by column chromatography with carbon tetrachloride as an eluant. Compound 14 had m.p. 66-67.5°,  $[\alpha]_D^{20}$  -16.2° (c 1.5, chloroform);  $v_{\text{max}}^{\text{KBr}}$  1720 (C=O) and 1545 cm<sup>-1</sup> (NO<sub>2</sub>).

Anal. Calc. for  $C_{16}H_{19}NO_7$ : C, 56.97; H, 5.68; N, 4.15. Found: C, 57.11; H, 5.76; N, 4.15.

Compound 13 had m.p. 84-85°,  $[\alpha]_D^{20}$  -10.5° (c 0.9, chloroform);  $v_{\text{max}}^{\text{KBr}}$  1720 (C=O) and 1545 cm<sup>-1</sup> (NO<sub>2</sub>).

Anal. Found: C, 57.01; H, 5.66; N, 4.11.

Epimerization by base. — From 5 and 6. The 10:1 mixture of cyclized products 5 and 6 (80 mg, 0.3 mmol) was kept in 0.04m sodium methoxide (4 ml) at room temperature. After 24 h, evaporation of the deionized mixture provided a syrup showing 5 and 6 in the ratio of 3:1, as determined by the intensities of the acetal methyl signals at  $\delta$  1.51 (5) and 1.58 (6) in the <sup>1</sup>H-n.m.r. spectrum.

From 13 and 14. The 1:1 mixture of 13 and 14 (24 mg) was treated with 0.09m sodium methoxide (5 ml) for 40 h. Following processing as just described, a syrupy mixture of 5 and 6 in the ratio of 3:1 was obtained.

Epimerization by heating. — From 11 or 12. Pure 11 was heated in water for 3 h at 85-90° to give a mixture of 11 and 12 in the ratio of 2:3. Compound 12 also gave the same mixture under the same conditions.

From 13 or 14. Pure 13 gave a 4:1 mixture of 13 and 14 when heated in commercial dimethyl sulfoxide for 8 h at 80-90°. Compound 14 also gave the same mixture under the same conditions. Such epimerizations occurred in other solvents, as summarized in Table II.

### **ACKNOWLEDGMENTS**

The authors are grateful to Prof. H. Kobayashi and Dr. Y. Kaizu, Tokyo Institute of Technology, for recording the c.d. spectra and Mr. K. Kosaka, Japan Electric Optical Laboratories, for recording the <sup>13</sup>C-n.m.r. spectra. They also thank the Ministry of Education, Japanese Government, for a Scientific Research Grant-in-aid.

#### REFERENCES

- 1 R. J. SUHADOLNIK, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970, pp. 354-404.
- 2 For example, M. Bobek and J. Farkaš, Collect. Czech. Chem. Commun., 34 (1969) 247-252; S. Hanessian and A. G. Pernet, Adv. Carbohydr. Chem. Biochem., 33 (1976) 111-188.
- 3 H. OHRUI, G. H. JONES, J. G. MOFFATT, M. L. MADDOX, A. T. CHRISTENSEN, AND S. K. BYRAN, J. Am. Chem. Soc., 97 (1975) 4602-4613.
- 4 For example, T. TAKAMOTO AND R. SUDOH, Bull. Chem. Soc. Jpn., 48 (1975) 3413-3414.
- 5 H. L. FINKBEINER AND G. W. WAGNER, J. Org. Chem., 28 (1963) 215-217.
- 6 J. YOSHIMURA, T. IIDA, AND M. FUNABASHI, Bull. Chem. Soc. Jpn., 43 (1970) 3887-3891.
- 7 J. C. SOWDEN, C. H. BOWERS, L. HOUGH, AND S. H. SHUTE, Chem. Ind. (London), (1962) 1827–1828.
- 8 L. HOUGH AND S. H. SHUTE, J. Chem. Soc., (1962) 4633-4637.
- 9 J. C. SOWDEN AND M. L. OFTEDAHL, J. Org. Chem., 26 (1961) 1974-1976.
- 10 P. A. LEVENE AND R. S. TIPSON, J. Biol. Chem., 102 (1936) 731-747.
- 11 J. C. SOWDEN AND H. O. L. FISCHER, J. Am. Chem. Soc., 69 (1947) 1048-1050.
- 12 S. TRIPPETT AND D. M. WALKER, J. Chem. Soc., (1959) 3874-3876.
- 13 C. SATOH AND A. KIYOMOTO, Chem. Pharm. Bull., 12 (1964) 615-619.
- 14 C. SATOH AND A. KIYOMOTO, Carbohydr. Res., 3 (1966) 248-251.
- 15 C. SATOH, A. KIYOMOTO, AND T. OKUDA, Carbohydr. Res., 5 (1967) 140-148.
- 16 S. D. BERNARDO AND M. WEIGELE, J. Org. Chem., 42 (1977) 109-112.
- 17 C. K. Chu, I. Wempen, K. A. Watanabe, and J. J. Fox, J. Org. Chem., 41 (1976) 2793-2797.
- 18 J. G. BUCHANAN, A. R. EDGAR, M. J. POWER, AND P. D. THEAKER, Carbohydr. Res., 38 (1974) C22-C24.
- 19 H. OHRUI, S. EMOTO, G. H. JONES, AND J. G. MOFFATT, Abstr. Int. Symp. Carbohydr. Chem., 8th, (Kyoto), 1976, p. 29.
- 20 H. OHRUI AND S. EMOTO, J. Org. Chem., 42 (1977) 1951-1957.